Коррозия цементного камня третьего вида

Коррозия цементного камня третьего вида

Статьи

Три вида коррозии бетона: коррозия выщелачивания, кислотная и солевая. Средства восстановления.

Как известно, бетон не вечен и подвержен коррозии в условиях воздействия внешней природной среды. Коррозийные процессы, протекающие в бетоне, как правило, различаются на три основных вида (группы). Каждая из этих групп, в свою очередь, имеет свои ключевые признаки, по которым их классифицируют в виды.
И конечно, как каждый вид разрушения, cвязанный с коррозией железобетонных конструкций, имеет и свои специфические средства восстановления. Но всё же, давайте разберём всё по порядку. И так…

З вида коррозии бетона

• 1 вид коррозии бетона обусловлен в результате выщелачивания. Это когда под воздействием пресной воды (мягких вод) растворяются основные составные компоненты цемента (цементного камня) и проникают сквозь толщу бетона наружу в процессе фильтрации.
• 2 вид коррозии бетона происходит из-за следствия реакции обменных процессов между компонентами, содержащимися в воде, и бетона, образуя растворимые компоненты или продукты без вяжущих (скрепляющих) свойств, ослабляя в конечном итоге структуру цементного камня.
• 3 же вид коррозии бетона наступает при постепенном накоплении и кристаллизации солей в капиллярах, порах и трещинах цементного камня, которые способствуют возникновению напряжению и внутреннему разрушению железобетона.

IMGP0833
IMGP0824

То есть исходя из этого, можно классифицировать и заключить следующее:

1 вид – это коррозия выщелачивания.
Она представляет из себя: постепенное растворение и вымывание компонентов самого цементного камня из бетонного изделия из-за фильтрации мягкой (пресной) воды через саму толщу бетона.
В этом случае, нарушается химическое равновесие между жидкостью в порах и составляющими компонентами цементного камня. Это приводит в итоге к постепенному ослаблению, влияющей на механическую прочность и ведущей к разрушению бетонной/железобетонной конструкции.
Характерным внешним признаком этого вида коррозии является появление белого налёта на стенах бетонных сооружений, в местах выхода воды при фильтрации.

2 вид – это кислотная коррозия.
Данная коррозия обусловлена воздействием кислот, солей и щелочей органического и неорганического характера, когда образуются в бетоне легкорастворимые соли. В этом случае, легкорастворимые соли вымываются из бетона, а образующиеся в результате этого остаточные продукты присутствуют в виде рыхлых масс, не имеющих свойств вязкости, влияющих на прочность.

IMG_0285
IMG_0284

Данный вид коррозии способен полностью разрушить цементный камень из-за растворения и вымывания образованных продуктов химической реакции под воздействием кислот.

3 вид – это солевая коррозия.
Третий вид обусловлен разрушением бетона из-за кристаллизации солей и испарением минерализованной воды в порах и капиллярах бетона. — Это вызывает внутренние напряжения (расширения объёма в порах цемента) и трещины в бетонном сооружении.
Этот же вид коррозии различается также по специфике воздействия определенных химических групп: сульфатная и магнезиальная, — исходя из содержания химических соединений в жидкостях агрессивной среды, соприкасающихся с цементным камнем.
Как полагают специалисты, под воздействием сульфатной группы разрушение бетона наступает вследствие его усадки и расширения или набухании алюминатов (химических элементов) в цементном камне.
Во втором (магнезиальная) – разрушение бетона происходит из-за образования и появления рыхлости и потери в цементном камне связующих свойств, что может приводить к стойкому сильнейшему разрушению сооружений.

Click here to preview your posts with PRO themes ››

Такова общая целостная картина причин разрушения бетона, с рассмотрением 3 основных видов коррозии.

Когда мы достаточно ясно увидели данный «пейзаж» разрушения изнутри, то что мы можем предпринять, чтобы это ликвидировать. Вариантов можно рассмотреть великое множество, но нам нужна только ЭФФЕКТИВНОСТЬ и НАДЕЖНОСТЬ!

Надёжное решение эффективного ВАЙТМИКС

Высокопрочные сухие строительные смеси ВАЙТМИКС отлично зарекомендовали при восстановлении бетонных сооружений, поврежденных коррозией, защиты бетона от коррозии. Они предлагают несколько вариантов эффективного решения задач, стоящих перед строителями.

При данных рассмотренных видах разрушения, компания ВАЙТМИКС готова предоставить на выбор ремонтников несколько видов смесей для защиты бетона от коррозии. Как готовых уже для этого, так и специально подготовленных для определенной стоящей задачи и конкретного вида разрушения. При этом специалисты: выезжают на объект, проводят анализ разрушения, подбирают состав смеси для данного объекта, проводят испытания её и предоставляют все документы — сертификаты, протоколы исследований и испытаний.

Из готовых высокопрочных безусадочных смесей компания ВАЙТМИКС предлагает линейку эффективного решения, где особняком для этих целей выделяется марка ВАЙТМИКС RT 40. Это тиксотропная ремонтная смесь высокомарочного цемента с набором полимерных добавок, фиброй и грубым заполнителем (фракцией до 2.5мм). Она применяется при устранении повреждений бетона связанных с коррозией и имеющих глубину от 20 до 60мм. Затвердевший состав обладает хорошей адгезией к старому бетону до 20кг/см2, отсутствием усадки, высокой морозостойкостью F300 и водонепроницаемостью W18, трещинностойкостью в следствие наличия фибры (предел прочности при изгибе до 125 кг/см2).

Ремонт с применением смеси ВАЙТМИКС RT40 железобетонного монолитного перекрытия
котельной
ЗАО МЗ «Арсенал» г. Санкт-Петербург 2012 г.

Подробнее узнать об этом вы можете узнать на страницах сайта, где детально рассмотрены все представленные нами марки высокопрочных смесей ВАЙТМИКС.

Виды коррозии бетона

Выделяют 3 вида:

  1. разложение составляющих цементного камня водой, а так же растворение и вымывание (выщелачивание) образовавшегося при этом или ранее имевшегося гидроксида кальция;
  2. образование легкорастворимых солей в результате взаимодействия составляющих цементного камня с веществами, находящимися в окружающей среде, а также вымывание этих солей;
  3. образование в цементном камне (под влиянием проникающих в него веществ) соединений, имеющих больший объем, чем исходные продукты реакции, что приводит к внутренним напряжениям и образованию трещин в бетоне;

На практике разрушение бетона обусловлено коррозионным воздействиям не одного, а различных видов.

Коррозия бетона 1 вида

Может протекать с разной скоростью. Например, в плотном массивном бетоне гидросооружений процесс коррозии бетона идет медленно и результат процессов может сказаться через несколько десятилетий. Но, например, в тонкостенных бетонных оболочках градирен вымывание гидроксида кальция и разложение составляющих цементного камня происходит очень быстро и уже через несколько лет может вызвать необходимость ремонтных работ.

Click here to preview your posts with PRO themes ››

Если через бетон начинает фильтроваться вода, то разложение гидросиликатов и отчасти гидроалюминатов кальция, содержащегося в цементном камне, ускоряется, и тогда из бетона выносится водой значительное количество гидроксида кальция. Бетон становится высокопористым и теряет прочность.

В соответствии с изменением растворимости гидроксида кальция меняется и скорость коррозии 1 вида.

Следует отметить, что процессы разложения составляющих цементного камня в толще бетона и вымывание гидроксида кальция настолько задерживаются, когда на поверхности бетона под воздействием диоксида углерода, содержащегося в воздухе, из гидроксида кальция образуется карбонат кальция. Поэтому, например, бетонные блоки для подводных гидротехнических сооружений, до опускания в воду выдерживают несколько месяцев на воздухе для карбонизации извести в поверхностном слое.

Коррозия бетона 2 вида

К данному виду относятся процессы, которые развиваются в бетоне при обменных реакция цементного камня с веществами, находящимися в в окружающей среде, и сопровождаются образованием легкорастворимых продуктов. Наряду с продуктами, вымываемыми водой в теле бетона могут осаждаться такие аморфные массы, не обладающие вяжущей способностью. В результате развития таких процессов бетон с течением времени может превратиться в малопрочную ноздреватую массу.

Из коррозионных процессов 2 вида особенное практическое значение имеет углекислотная и магнезиальная коррозия.

Коррозия бетона 3 вида

Основным признаком служит накопление в порах и капиллярах бетона соединений, которые образуются в нем с увеличением объема по сравнению с объемом исходных продуктов реакций. Наибольшее практическое значение из 3 вида коррозии бетона получила сульфатная коррозия.

Химическая коррозия бетона

Химическая коррозия цемента происходит под действием кислот, растворов некоторых ролей и других веществ, вступающих в реакцию с гидроокисью кальция, выделяемой цементом, или трехкальциевым алюминатом цемента. В результате образуются соли, которые легко растворяются в воде или, кристаллизуясь в порах и увеличиваясь в объеме, разрывают цементный камень.
Все кислоты, как неорганические (серная, соляная, азотная и др.), так и органические (например, жирные кислоты, содержащиеся в растительном и животном маслах), разрушающее действуют на обыкновенный портландцемент.

Например, при действии серной кислоты на гидроокись кальция, выделяющуюся при твердении цемента, образуется гипс по реакции:

Гипс кристаллизуется в порах цементного камня, и рост кристаллов разрушает его. С трехкальциевым алюминатом цемента гипс образует сложное вещество гидросульфоалюминат кальция, значительно увеличивающееся в объеме. Все эти явления приводят к разрушению цементного камня серной кислотой.

При действии соляной кислоты образуется хлористый кальций по реакции:

Са(ОН)2+2НСl=СаСl2 +2Н2О,
хлористый же кальций легко растворим в воде, в результате чего цемент распадается.

Свободные кислоты встречаются в сточных водах промышленных предприятий (они могут проникать в почву и разрушать так бетонные Фундаменты) и в болотных водах; кислота образуется также Сернистого газа, выходящего из топок котлов, паровоназны химических аппаратов. При соединении ее с влагой воздуха или парами воды серная кислота может вызвать коррозию железобетонных перекрытий: на заводах, в паровозных депо и т. п.

Click here to preview your posts with PRO themes ››

Из растворов солей наиболее опасны сернокислые соли (сульфаты). В природных водах, в частности в морской, чаше всего встречаются MgSO4 и CaSO4, иногда Na2SO4, а в промышленных водах могут содержаться и другие сульфаты

Действие чистых гипсовых растворов на цемент заключается в образовании сложного химического соединения между гипсом и трехкальциевым алюминатом, содержащимся в цементе, а именно гидросульфоалюмината кальция по реакции:

3CaSO4+3CaO • AlO3+вода =3CaO • Al2O3 • 3CaSO4 • 31HaO.

Это вещество образуется с присоединением большого количества воды и увеличивается в объеме до 2,5 раз. От расширения этого соединения в порах цементного камня он растрескивается, а затем под действием воды или растворов солей превращается в белую слизь, вытекающую из бетона.

Гидросульфоалюминат кальция кристаллизуется в виде тонких игл, напоминающих бациллы, поэтому ему дано еще образное название «цементная бацилла.
Сернокислый магний действует на гидроокись кальция, выделяемую цементом, в силу обменной реакции:

Са(ОН)2 + MgSO4 + 2Н2О = = Mg(OH)2 + CaSO4•2H2O;

образующийся гидрат окиси магния представляет собой рыхлое аморфное вещество, не обладающее связностью и прочностью, а гипс кристаллизуется с увеличением объема или образует гидросульфоалюминат кальция.

Все эти явления, а также описанное выше растворение гидроокиси кальция приводят к разрушению цементного камня, выделению из бетона белой тестообразной массы. Отсюда возникло выражение белая смерть бетона.
Из хлористых солей (хлоридов) разрушающее действуют на цемент хлористый магний (содержится, например, в морской воде), хлористый алюминий и др. При действии хлористого магня на гидроокись кальция образуется легко растворимый хлористый кальций и рыхлый гидрат окиси магния по реакции: Ca(OH),+MgCl2=CaCl2+ Mg(OH2)

Поваренная соль NaCl повышает растворимость гидроокиси кальция, соединяется с алюминатами и несколько понижает прочность цемента; поэтому присутствие большого количества NaCl в воде, действующей на бетон, нежелательно, но все же NaCl не является опасной для цемента.

Из азотнокислых солей (нитратов) очень опасна для цемента аммиачная селитра NH4NO3.

Морская вода, а также вода соленых озер, лиманов и некоторые грунтовые воды, содержащие MgSO4, MgCl2 и другие соли, разрушающее действуют на обыкновенный портландцемент. Если не принимать специальных мер защиты, то в такой воде этот цемент будет медленно разрушаться.

Природные воды обычно содержат еще свободную углекислоту и ее соли карбонат СаСО3 и бикарбонат кальция Са(НСОз)2. Эти соли не опасны для цемента, но свободная (агрессивная) углекислота в количестве больше 15—20 мг/л действует так же, как и все кислоты, т. е. разрушающее. Происходит следующее: образовавшийся вначале в поверхностном слое бетона карбонат переходит в бикарбонат по реакции:

СаСО3 + СО2 + Н2О = Са.(НСО3) 2.

Бикарбонат легко растворим и вымывается водой.
Если необходимо подавать воду, богатую углекислотой, через бетонные трубы, лотки, в бассейны и т. п., то ее предварительно пропускают через фильтр, наполненный кусками известняка, который связывает агрессивную углекислоту в бикарбонат. Известняк в фильтре необходимо периодически менять.

Click here to preview your posts with PRO themes ››

Воздействие на бетон раствора сахара

Вредно действует на бетон раствор сахара так как образует с гидроокисью кальция легко растворимый сахарат кальция.
Действие всех перечисленных вод, кислот и растворов солей на цемент особенно интенсивно, если бетон неплотный, недостаточно затвердел, если фильтрация через него происходит под напором.
Безвредны для цемента кремнекислые соли (силикаты), так как цемент сам состоит в основном из силикатов а также соли кремнефтористоводородной кислоты (флюаты) и соли угольной кислоты (карбонаты), например сода.

Растворы извести

Растворы извести едкого натра и других щелочей, так как затвердевший цемент содержит свободную гидроокись кальция и, следовательно, сам является основным соединением. Аммиак и аммиачная вода безвредны для цемента но присутствие аммиачных солей в воде делают ее опасной.

Цемент, с высоким содержанием алюминатов может разрушаться и от действия сильных щелочей. Кроме того, следует иметь в виду, что если цементный бетон. насыщается раствором щелочи (едких натра или кали), а затем высыхает, то под влиянием углекислого газа в цементном камне образуются сода или поташ, которые, кристаллизуясь, расширяются в объеме и разрушают цементный камень.

Не представляют опасности для цемента нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла), если они не содержат большого количества нафтеновых кислот или соединений серы, однако легкие нефтепродукты, быстро проникают через обыкновенный бетон.

Агрессивное действие минерализованных вод

Для защиты от агрессивного действия минерализованных вод (в частности морской воды) применяют бетоны высокой плотности, изготовляют их с применением особых видов цементов, в которых свободная гидроокись кальция не выделяется или выделяется только в небольшом количестве, а также меньше содержится или вовсе нет трехкальциевого алюмината.

Сюда относятся глиноземистый цемент, сульфатостойкий портландцемент, цемент с активными кремнеземистыми добавками (так называемый пуццолановый портландцемент) и шлакопортландцемент. Однако и эти цементы не могут противостоять действию свободных сильных кислот. Для защиты сооружений от действия кислот необходимо применять специальные кислотоупорные материалы: стекло, керамику, камень естественный или плавленный из горных пород, кислотоупорные цемент и бетон.

Коррозия стальной арматуры в железобетонных конструкциях

Для устройства силового каркаса бетонных конструкций используют стальные арматурные стержни с рифленой или гладкой поверхностью. Их основная функция – повысить устойчивость бетона к нагрузкам на сжатие, растяжение, сдвиг. Коррозионное разрушение арматуры значительно снижает прочность всей конструкции.

Факторы, провоцирующие потерю прочности каркаса, – воздействие воды, наличие в воздухе хлора, сероводорода и других серосодержащих газов.

Вода и газы поступают к стальному каркасу через поры в бетонном камне.

Способы защиты стальной арматуры в бетоне от коррозии:

  • Использование рационально составленной бетонной смеси, введение в ее состав ингибиторов, замедляющих коррозионные процессы в стали. Минимальное содержание в бетонной смеси хлоридов и роданидов. Количество хлористого кальция должно быть не более 2% от общей массы вяжущего.
  • Пассивирование поверхности стальных стержней перед сваркой или связыванием арматурного каркаса. Пассивирующие вещества вводят и в состав самой бетонной смеси. Чаще всего это нитрит натрия, применяемый в количестве 2-3% от массы вяжущего.
  • Улучшение плотности бетона, поскольку чем больше в структуре пустот, тем выше вероятность поступления к стальным стержням воды и агрессивных газов.
  • Соблюдение технологических правил укладки силового каркаса в опалубку.

Click here to preview your posts with PRO themes ››

Во избежание преждевременного разрушения железобетонной конструкции необходимо контролировать ее состояние с помощью технологий неразрушающего контроля, предусмотренных ГОСТом 18105-86.

Андрей Васильев

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

коррозия бетона

Бетон состоит из трех основных компонентов: вода, агрегат (камень, песок или гравий) и портландцемент. При смешивании с водой и агрегатами, цемент выступает в качестве связующего вещества. В зависимости от области применения, используется определенная марка прочности и вид цемента.

А также, в состав бетона вводятся различные добавки для придания смеси определенных свойств. Например, одни пластификаторы влияют на устойчивость бетона к колебаниям температур. Это свойство не дает бетонной смеси замерзать во время строительства в условиях низких температур.

Другие пластификаторы наоборот, ускоряют процесс схватывания, что позволяет ускорить процесс строительства. А пластификаторы-замедлители не дают бетонной смеси затвердеть во время транспортировки на дальнее расстояние.

Зная состав конкретной бетонной смеси, и область ее применения, можно минимизировать риски разрушения конструкции. Причиной коррозии могут быть климатические условия, колебания температур, агрессивная водная среда, и многое другое.

Для антикоррозионной защиты бетона рекомендуем к применению высокоэффективный полимерный лак Тексол. Антикоррозионный лак представляет собой однокомпонентный быстросохнущий материал на основе пвх-смол (сополимеров виниловой группы) с полимерными добавками в органических растворителях.

Лак по бетону Тексол предназначен для антикоррозионной защиты бетонных, железобетонных, кирпичных, асбоцементных и других минеральных поверхностей.

Подробнее о полимерном антикоррозионном лаке для защиты бетона Тексол и антикоррозионной защите бетона можно узнать на нашем сайте.

Надеемся, разделы сайта помогут Вам выбрать оптимальное решение для защиты бетона и бетонных конструкций от коррозии.

Защита арматуры от коррозии в бетоне

Из-за коррозионного разрушения металла на арматуре образуются продукты коррозии, которые больше по объему, чем сама арматура. Из-за этого бетон трескается и разрушается. Для защиты бетона от разрушения в него добавляют пластифицирующие присадки, которые уменьшают пористость материала, и ингибиторы коррозии, которые замедляют его разъедание. Чтобы предупредить образование ржавчины на арматуре и увеличить долговечность железобетонных сооружений, нужно своевременно выявлять новые трещины, следить за развитием уже существующих и проводить мероприятия по защите бетона от разрушения на улице.

Строительный Инструмент
Добавить комментарий