Древнерусский раствор оказался лучше современного цемента
Древнерусский раствор оказался лучше современного цемента
Древнерусский строительный раствор оказался по нескольким параметрам лучше, чем современный цемент. Подробностями строительства крепостей на Руси в XVI-XVII веках руководитель исследования поделился с корреспондентом Infox.ru.
Российские историки уже давно занимаются изучением истории и техники древнерусского строительства. Как пояснил корреспонденту Infox.ru кандидат исторических наук Константин Носов из Российской академии государственной службы при президенте РФ в Москве, «все каменные или кирпичные сооружения на Руси строились с использованием специального строительного раствора». Изучение состава этого раствора помогает ученым не только понять методику строительства, но и точнее датировать архитектурный памятник, создать похожий раствор для проведения реставрационных работ, определить, где именно добывались составляющие раствора, и отнести архитектурный памятник к определенной строительной школе.
Впервые этим вопросом историки занялись еще в 1930 году, однако до сих пор про растворы известно немного. По словам Носова, дело в том, что до настоящего времени ученые использовали каждый свой метод анализа, да и обработали небольшое количество образцов. В основном исследователей интересовали домонгольские сооружения: ученые исследовали около 90 древнерусских памятников, из которых 70 датируются XI-XIII веками.
13 образцов на анализ
Команда российских ученых под руководством Носова решила провести комплексный анализ образцов раствора более позднего периода. Ученый лично взял 13 образцов строительных растворов русских крепостей XVI-XVII веков в Нижнем Новгороде, Коломне, Зарайске, Серпухове, Борисовом городке, Смоленске и Вязьме. Для сравнения он также изучил образцы современного раствора в Смоленске и средневековых укреплений в Англии и в Уэльсе (замок в Чепстоу, городские стены в Конуи и в Кембере). Сложность работы заключалась в том, чтобы найти тот участок крепости, где не проводились реставрации и не применялись более поздние растворы (например, в случае с Московским Кремлем найти кладку конца XV века практически невозможно, так как крепость слишком часто ремонтировалась).
Что такое строительный раствор?
Строительный раствор состоит из двух компонентов: вяжущего вещества и заполнителя. Иногда к ним подмешивают и специальные добавки. На Руси в качестве вяжущего элемента использовалась известь: известняк, мел и другие карбонатные породы обжигались в специальных печах. К полученной смеси добавляли воду, в результате чего образовывалась гашеная известь, получалось этакое строительное «тесто». Однако такой материал быстро трескался. Поэтому к извести добавляли заполнитель, например песок, значительно улучшавший качество строительного раствора.
Ученые определили прочность разных строительных растворов, процентное соотношение вяжущего элемента и заполнителя, их состав и дополнительные примеси (например обломки кирпича или кирпичная мука, шлак, раковины и т. д.).
Как и из чего строили в XVI веке?
В Смоленске Носов брал четыре образца раствора из разных мест. Оказалось, что их составы довольно сильно отличаются между собой. Как пояснил ученый корреспонденту Infox.ru, видимо, у древних мастеров не было устоявшейся рецептуры приготовления этого вещества, и каждый раз получалось по-разному.
Образец современного раствора, использованный реставраторами, оказался весьма похож на древнерусский, однако оказался плохо перемешан. Зато средневековые образцы из Уэльса и Англии очень похожи на русские растворы XVI-XVII веков.
Несмотря на все полученные данные, ученым еще предстоит выполнить большую работу, чтобы сделать выводы об общей эволюции строительных растворов на Руси и их использовании в культовых, военных и гражданских сооружениях. По словам Носова, также интересно было бы сравнить древнерусские растворы с итальянскими, так как в Россию приезжали и иностранные мастера, например Аристотель Фиораванти (примерно 1415—1486), который построил Успенский собор в Москве.
Статья об исследовании строительных растворов русских крепостей XVI-XVII веков опубликована в журнале «Российская археология» (№ 1, 2009).
Другие материалы по теме: Интересно, что
Бетон до нашей эры
Такой распространенный сейчас строительный материал – бетон – впервые появился более 7500 лет назад. Древний образец археологи обнаружили во время раскопок в Югославии. В одной из хижин на берегу Дуная толщина бетонного пола составила 25 см, а в качестве компонентов использована красная известь и гравий. Известь, жирный влажный грунт или глина в те времена выступали вяжущим веществом, чем в наше время является цемент. Все это соединялось с водой, а после высыхания обладало такой прочностью, что некоторые дома, храмы, сторожевые башни и прочие строения до сегодня выдерживают любые атмосферные явления.
Цемент в цифрах
Самым основным строительным материалом можно назвать цемент вместе с производимым из него бетоном. Очень интересную статистику, связанную с этим удивительным материалом, можно найти в сети интернет. Ниже можно почитать основные статистические выводы, а также смотрите статью об изобретении цемента.
Интересно, что это второй после воды по количеству использования ресурс на земле. Производством цемента занимаются 156 стран мира. Большая часть производства цемента в мире (70%) находится в 10 странах мира. За несколько последних лет в структуре производства и потребления цемента увеличилась доля развивающихся стран. Первое место среди них занимает Китай. Объемы цементного производства в Китае за 1994 — 2011 годы выросли в пять раз. Это составило более 50% мирового объема производства.
Можно использовать необычные строительные материалы
Технический прогресс диктует свои условия развития строительной отрасли. Все чаще и чаще на рынке появляются новые строительные материалы. Но, можно заняться строительством выбрав совсем необычные строительные материалы и построить вполне современный дом.
Именно так поступил один из запорожских дачников. Для стен своего дачного домика вместо строительных блоков он использовал обыкновенные пустые стеклянные бутылки из-под шампанского. Толстое бутылочное стекло позволило сделать стены устойчивыми и крепкими, а воздух находящийся внутри бутылок создает дополнительную воздушную прослойку, которая отлично помогает сохранить тепло внутри необычной постройки.
Полимербетон — новое слово в строительстве
Такое понятие как «полимербетон» сегодня охватывает несколько различных видов бетона, имеющих в своем составе особое органическое термореактическое связывающее вещество (эпоксидную смолу) и специальный дисперсный наполнитель (тальк, кварц или гранитную крошку). Однако, из-за весьма высокого содержания дисперсной фракции, изделия из полимербетона не смогут выдержать серьезную несущую нагрузку. Поэтому из него не делают, например, строительные блоки, применяемые в качестве опорных элементов, но широко используют в виде интерьерного или фасадного декора.
Главное свойство бетона — прочность
Прежде чем начать разговор о характеристиках такого строительного материала, как бетон, необходимо узнать, что же он из себя представляет. Бетон – это строительный материал, который производиться искусственным путем в результате соединения цемента, воды и гравия, образуя единый строительный материал.
Кровь и бетон
С появлением синтетических полимеров, выпускаемых промышленным путем, экологическая ситуация в мире стала заметно ухудшаться, и сегодня этот процесс продолжает набирать темпы. Можно ли его остановить? Для этого человечеству необходимо перейти на более безопасные для природы биоразлагаемые материалы, способные предотвратить накопление мусора на планете. Что это могут быть за материалы? Возможно, ответ на этот вопрос следует искать в относительно недавнем прошлом, когда люди для самых разных целей, в том числе для производства композитных материалов, применяли натуральное сырье, например кровь.
Очистка кровью
Около 60 процентов растворимых белков крови составляет сывороточный альбумин — «молекула-такси», как ее иногда называют за способность связываться с молекулами как органической, так и неорганической природы и выполнять их транспорт в крови и межклеточной жидкости. Одна молекула альбумина может одновременно связать 25—50 крупных молекул билирубина — продукта расщепления некоторых белков.
Возможность «прилеплять» разные по химической природе вещества определяется наличием в молекуле белка множества разнообразных функциональных групп и липофильных частей.
Это свойство альбумина позволило первым предприятиям по производству сахара использовать кровь для очистки первичного сахарного сиропа.
Кровь оказалась самым дешевым среди возможных реагентов, так как обходилась в 35 раз дешевле популярного на тот момент угля, но не уступала ему по эффективности очистки. На 60 килограмм сырого сахара требовался всего лишь литр свежей крови. Альбумин из плазмы крови при кипении с неочищенным сахарным сиропом сворачивался и сорбировал ненужные гидрофобные примеси и твердые коллоидные частицы.
В такой очистке важным этапом является процесс необратимой денатурации — потери белком исходной конформации, в результате которого он перестает растворяться в воде. Но и уже свернутому альбумину нашлось отличное применение в промышленности.
«Древесина» из крови
В 1855 году парижский писатель Франсуа Лепаж (Francois Lepage) придумал так называемую «твердую древесину» (bois durci) — спрессованную смесь опилок с кровью крупного рогатого скота или более дорогих яичных белков, по виду напоминающую черное дерево.
«Твердую древесину» получали путем смешения древесной муки с 15-20 процентами по массе свежей крови. Кашицу нагревали до температуры 45 градусов Цельсия, выпаривая лишнюю влагу. Затем полученный порошок насыпали в железную форму, полчаса давили прессом и нагревали раскаленным до красна металлом примерно до 150-200 градусов Цельсия. Готовый материал окунали в воду.
Для производства одного килограмма «древесины» по такой технологии, требовалось всего около 130 миллилитров жидкой крови.
Медальон с изображением папы Римского Пия IX из «черного дерева», около 1870 года
Исследования термодинамики свертываемости альбумина показывают, что перед тем, как окончательно и бесповоротно (необратимо) денатурировать, он проходит через промежуточную обратимую стадию. На этой стадии длинная свернутая молекула белка разворачивается и соединяется с несколькими соседними такими же молекулами. Образуется так называемый олигомер — цепь из нескольких белковых звеньев.
Такой раствор гуще исходного состояния альбумина, так как некоторые связи между молекулами стали намного прочнее, но еще не окончательно затвердевший. При температуре выше 74 градусов Цельсия олигомеры соединяются друг с другом и полученные цепочки удобно укладываются и образуют единую белковую сетку, после чего перевести белок обратно в растворимое состояние уже невозможно.
Воду на предприятиях по производству «твердого дерева» удаляли не зря, так как белок в безводной среде денатурирует более полно и потери ценного альбумина оказываются минимальны.
В 1859 году Альфред Лэтри (Alfred Latry) купил у Лепажа патент и основал компанию по производству чернильниц, табличек, картинных рам и мебели. Уже в 1862 году он представил свою продукцию на международной выставке.
Рама из «твердого дерева», произведенная в Сезанне около 1900 года
Неизвестно точно, когда производство «твердого дерева» в Париже остановилось, но в 1883 году члены семьи Хунебелле основали еще одну фабрику по производству «кровавого» композита на востоке Франции, в Сезанне. До пожара в 1926 году там изготавливали декоративную продукцию из «твердого дерева» в стилях Belle Epoque и Art Nouveau.
Гемацит и дверные ручки
В 1892 году в январском выпуске американского журнала Manufacturer and Builder вышла статья об изобретении доктора У.Х. Диббла (W.H. Dibble) из Трентона, штат Нью-Джерси, на которое он получил патент еще в 1877 году.
Речь шла о промышленном производстве дешевого, прочного, стойкого к температурным и атмосферным колебаниям материала. Хотя гемацит (hemacite), как назвал свое изобретение доктор Диббл, представлял из себя смесь крови с опилками и химическими добавками, полученную под давлением 40 тысяч фунтов на квадратный дюйм, изделия из него выходили довольно приятными на вид и на ощупь.
Дверная ручка из гемацита в викторианском стиле
Дверная ручка из гемацита в викторианском стиле
Дверная ручка из гемацита в викторианском стиле
Компания Dibble’s Hemacite Manufacturing Company производила из гемацита материалы для внутренней отделки помещений, дверные ручки, кнопки для кассовых аппаратов, а потом и колеса для роликовых коньков. Можно сказать, что гемацит был аналогом современного пластика.
Однако такой полимер отличался от синтетических тем, что под действием ферментов мог разлагаться на низкомолекулярные вещества, а под давлением или под действием химических веществ — и вовсе переходить в исходное водорастворимое состояние, то есть ренатурировать. Можно сказать, что Дибблу удалось создать настоящий биоразлагаемый композитный материал.
Кстати, изобретатель «кровавого» композита вообще был довольно предприимчивым и талантливым человеком. До работы над гемацитом Диббл запатентовал стоматологическое приспособление, позволявшее держать рот пациента открытым и в то же время высасывать из полости рта слюну.
К началу ХХ века Dibble’s Hemacite Manufacturing Company пережила пожар на производстве, переезд в другое здание и смену названия. Подкосило ее лишь появление еще более дешевого синтетического материала — бакелита, запатентованного в 1909 году Лео Баккеландом, через год основавшим компанию Bakelite Corporation.
Тем не менее изделия из гемацита до сих пор находятся в рабочем состоянии, и их даже можно купить.
Альбуминовый клей
Как уже говорилось, в структуру альбумина входит множество различных функциональных групп, которые могут образовывать слабые, но многочисленные связи с различными молекулами.
Под действием щелочи, например гашеной извести, белок приобретает высокий заряд, его конформация изменяется, макромолекулы белка «распрямляются» и укладываются друг относительно друга так, что раствор густеет и становится липким. Это свойство позволяет предположить, что альбумин может стать хорошим клеем.
Большое число гидроксильных групп в составных веществах древесины образуют водородные связи с заряженными центрами белка. Таких связей образуется достаточно много, чтобы альбуминовый клей мог надежно прикрепиться к деревянной поверхности. Но для того, чтобы поверхности не расклеились, силы взаимодействия между молекулами альбумина тоже должны быть достаточно сильными. Для этого склеенные изделия подвергают действию высоких температур, в результате чего белок денатурирует и клей твердеет.
В 1913 году американский изобретатель Генри Хаскел (Henry L. Haskell) использовал адгезивные свойства сывороточного белка и изобрел гидрофобный клей из бычьего альбумина, способный склеивать фанерные листы.
Материал был назван хаскелитом в честь изобретателя и производился компанией Haskell Manufacturing в Мичигане. Из него делали самолеты, лодки, понтоны, двери, полы, крыши и другие конструктивные элементы.
Каное из хаскелита. При собственном весе около 30 килограмм оно выдерживало нагрузку в 1400 килограмм
Во время Первой мировой войны работники фабрики снабжали хаскелитом американскую, британскую и французскую армии. Около 0,5 квадратного километра материала пошло на производство военных самолетов.
После 1930 года компания уже продавала фанеру с дополнительными слоями из стали, алюминия или меди, причем для ее производства использовались различные фенольные смолы.
Гемоглобин и пузырьки
Кровь рогатого скота издавна использовали для изготовления разных видов «цемента», которые могли содержать не только бычий альбумин, но и белки из яиц, молока и сыра.
В одном из древних китайских рецептов такого цемента рекомендовано смешать 100 частей гашеной извести, 75 частей крови быка и две части квасцов. Взаимодействуя с квасцами, кальций образовывал из извести сульфат, который мог затвердевать в естественных условиях, образуя кристаллогидрат, а денатурированные белки играли роль связующего компонента.
Ученые нашли следы крови и в материалах стен древнего города Мира (Myra), возведенных во времена Римской империи. Сооружению удалось простоять до наших дней благодаря гемоглобину, который, захватывая кислород, стимулировал образование небольших пузырьков, укреплявших «кровавый» бетон.
Вовлечение воздуха в бетон, как сейчас называют такую процедуру, увеличивают устойчивость бетона к внутренним расширениям. Мелкие пузырьки размерами до одного миллиметра, которые при соблюдении технологии равномерно заполняют бетон, повышают его стойкость к климатическим изменениям и появлению трещин, снижая внутреннее трение в бетоне.
Сами римляне вряд ли догадывались об этом, но французский изобретатель Шарль Лалеман (Charles Laleman) понял, что именно гемоглобин способствует снижению как веса бетона, так и его теплопроводности (вовлечение пузырьков воздуха, плохо проводящего тепло, повышает изолирующие свойства материала в целом). В 1980 году он запатентовал технологии производства цемента, бетона и известкового раствора из высушенной крови животных.
Через десять лет соотечественник Лалемана Жорж Казаленс (Georges Cazalens) продолжил и развил его технологии.
Кирпичи из крови
Тремя годами позднее Конрад Стайнбо (Conrad Stinebaugh) предложил добавлять в цемент только кровь. Изобретатель заметил, что при смешивании сухого цемента с кровью вода из плазмы расходуется на реакцию с цементом, а оставшиеся компоненты крови распределяются по объему в виде небольших гелевых частиц. Стайнбо считал, что эти частицы заполняют пустоты, которые без этой добавки образуются в бóльшем количестве.
А совсем недавно, в 2012 году, британcкий архитектор Джек Манро (Jack Munro) в своей магистерской работе описал технологию создания кирпичей из крови коров. Возмутившись тем, что почти все здания сегодня возводятся из железобетона, который не всегда доступен в бедных странах, он нашел альтернативный стоительный материал.
Обсудив идею с фермерами, Манро взял около 30 литров свежей крови, которую может получить из одной коровы, и смешал ее с антикоагулянтом ЭДТА для предотвращения свертывания, консервантом — азидом натрия, чтобы кровь не испортилась, и наполнителями — песком и водой. Получившуюся смесь архитектор залил в формы и обжигал кирпичи в сушильном шкафу при температуре 70 градусов Цельсия.
Самые читаемые
Ольга Степакова стала министром информационной политики Мурманской области
8:12 – 18 октября
Андрей Чибис призвал готовиться к возможному ухудшению ситуации с коронавирусом
8:41 – 18 октября
Стали известны подробности ДТП с участием скорой помощи на Нижне-Ростинском шоссе в Мурманске
12:29 – 18 октября
Один человек погиб в ДТП с экскаватором на трассе в Печенгском районе
13:11 – 18 октября
Как в древности делали цемент
Тициана Ванорио (Tiziana Vanorio) и Варунторн Канитпаньячароен (Waruntorn Kanitpanyacharoen) из Стэнфордского университета выявили геологический процесс, которые мог подтолкнуть древних римлян к созданию бетона. В районе итальянского города Поццуоли в почве естественным образом образовывалась гашеная известь, которую римляне использовали для создания цемента. Подробности изложены в журнале Science.
В 1982 геологи обратили внимание на странные процессы, идущие в итальянском городе Поццуоли — уровень почвы здесь вдруг начал подниматься с неожиданной скоростью, иногда достигавшей двух метров в год. Этот процесс сопровождался мелкими землетрясениями, и власти даже эвакуировали около 40 тысяч человек из старинного центра города, опасаясь большого землетрясения или извержения вулкана. Но ничего не произошло.
После того, как почву рядом с Поццуоли пробурили на глубину 2,9 км, геологи наткнулись на толстый слой угля. Под воздействием жары и морской воды, этот слой начинал испускать углекислый газ, а тот в свою очередь вступал в реакцию с кальцием и водородом, — элементами, которыми богаты здешние скалы. Таким образом получалась та самая гашеная известь, с помощью которой римляне делали цементную смесь, лежащую в основе бетона. Кстати, вулканический пепел, применявшийся для создания этой «opus caementicium», привозили из Путеол — так в древности назывался Поццуоли.
Оказалось, что под землей сформировалась прочная перекрывающая порода, которая не позволяла тектоническим силам вырываться на поверхность. Ученые изучили те реакции, которые привели к образованию этой породы, и даже создали ролик, объясняющий этот механизм (см. внизу новости).
Вполне вероятно, что древнеримские строители при создании бетона вдохновлялись этими природными химическими реакциями — а без этого бетона не было бы великих римских построек. Римские дороги, храмы и акведуки возводились во всех землях, принадлежавших римской империи. Многие древнеримские создания не просто сохранились до сегодняшнего дня, пережив и саму империю, и множество завоевателей, и природные катаклизмы, но и по-прежнему используются по прямому назначению — по древним акведукам все еще течет вода, а по проложенным древними римлянами дорогам ездят современные машины.
И все это благодаря умению изготавливать состав, похожий на современный бетон. Они делали смесь их песка, извести, воды, добавляя туда вулканический пепел, туф, осколки глиняных изделий. Получалось что-то вроде цемента, который они заливали в полости между стенами, приобретавшими таким образом невероятную прочность.
Древнерусский строительный раствор оказался по нескольким параметрам лучше, чем современный цемент. Подробностями строительства крепостей на Руси в XVI-XVII веках руководитель исследования поделился с корреспондентом Infox.ru.
Российские историки уже давно занимаются изучением истории и техники древнерусского строительства. Как пояснил корреспонденту Infox.ru кандидат исторических наук Константин Носов из Российской академии государственной службы при президенте РФ в Москве, «все каменные или кирпичные сооружения на Руси строились с использованием специального строительного раствора». Изучение состава этого раствора помогает ученым не только понять методику строительства, но и точнее датировать архитектурный памятник, создать похожий раствор для проведения реставрационных работ, определить, где именно добывались составляющие раствора, и отнести архитектурный памятник к определенной строительной школе.
Впервые этим вопросом историки занялись еще в 1930 году, однако до сих пор про растворы известно немного. По словам Носова, дело в том, что до настоящего времени ученые использовали каждый свой метод анализа, да и обработали небольшое количество образцов. В основном исследователей интересовали домонгольские сооружения: ученые исследовали около 90 древнерусских памятников, из которых 70 датируются XI-XIII веками.
13 образцов на анализ
Команда российских ученых под руководством Носова решила провести комплексный анализ образцов раствора более позднего периода. Ученый лично взял 13 образцов строительных растворов русских крепостей XVI-XVII веков в Нижнем Новгороде, Коломне, Зарайске, Серпухове, Борисовом городке, Смоленске и Вязьме. Для сравнения он также изучил образцы современного раствора в Смоленске и средневековых укреплений в Англии и в Уэльсе (замок в Чепстоу, городские стены в Конуи и в Кембере). Сложность работы заключалась в том, чтобы найти тот участок крепости, где не проводились реставрации и не применялись более поздние растворы (например, в случае с Московским Кремлем найти кладку конца XV века практически невозможно, так как крепость слишком часто ремонтировалась).
Что такое строительный раствор?
Строительный раствор состоит из двух компонентов: вяжущего вещества и заполнителя. Иногда к ним подмешивают и специальные добавки. На Руси в качестве вяжущего элемента использовалась известь: известняк, мел и другие карбонатные породы обжигались в специальных печах. К полученной смеси добавляли воду, в результате чего образовывалась гашеная известь, получалось этакое строительное «тесто». Однако такой материал быстро трескался. Поэтому к извести добавляли заполнитель, например песок, значительно улучшавший качество строительного раствора.
Ученые определили прочность разных строительных растворов, процентное соотношение вяжущего элемента и заполнителя, их состав и дополнительные примеси (например обломки кирпича или кирпичная мука, шлак, раковины и т. д.).
Как и из чего строили в XVI веке?
В Смоленске Носов брал четыре образца раствора из разных мест. Оказалось, что их составы довольно сильно отличаются между собой. Как пояснил ученый корреспонденту Infox.ru, видимо, у древних мастеров не было устоявшейся рецептуры приготовления этого вещества, и каждый раз получалось по-разному.
Образец современного раствора, использованный реставраторами, оказался весьма похож на древнерусский, однако оказался плохо перемешан. Зато средневековые образцы из Уэльса и Англии очень похожи на русские растворы XVI-XVII веков.
Несмотря на все полученные данные, ученым еще предстоит выполнить большую работу, чтобы сделать выводы об общей эволюции строительных растворов на Руси и их использовании в культовых, военных и гражданских сооружениях. По словам Носова, также интересно было бы сравнить древнерусские растворы с итальянскими, так как в Россию приезжали и иностранные мастера, например Аристотель Фиораванти (примерно 1415–1486), который построил Успенский собор в Москве.
Статья об исследовании строительных растворов русских крепостей XVI-XVII веков опубликована в журнале «Российская археология» (№ 1, 2009).
В сфере изготовления цемента современным строителям есть чему поучиться у древних римлян, считают исследователи, которые изучали древние строительные технологии под руководством Пауло Монтейро из Департамента энергетики Национальной лаборатории Лоренса Беркли в США.
Древнеримская технология изготовления цемента оказалась более передовой, чем современная — она требует меньших затрат энергии и является более экологичной, а сам кирпич по прочности превосходит современный, говорится на сайте Лаборатории Лоренса Беркли.
Сейчас в мире наиболее широко применяется портландцемент, который считается очень качественным. Но из-за того, что для его производства нужно подогревать смесь известняка и глины до 1450°С, от сгорания топлива выделяется углекислый газ. Кроме того, такой газ выделяет и сам нагретый известняк.
Римляне же, наоборот, для производства цемента использовали меньше извести и подогревали её только до 900°С. В этом процессе им нужно было меньше топлива — соответственно снижались и выбросы в атмосферу от его горения.
В состав цемента у римлян входила известь и магматические горные породы. Для возведения подводных конструкций смешивали известь и вулканический пепел, и такую смесь выкладывали в деревянную опалубку. Морская вода вызвала горячую химическую реакцию. Известь гасилась (проходила реакция гидратации), взаимодействовала с вулканическим пеплом, и вся смесь начинала застывать.
С древних времён сохранились и записи древних римлян о качестве цемента и вулканического пепла.
Вначале Витрувий, инженер императора Августа, а позже Плиний Старший записал, что самый лучший цемент получался из пепла, взятого в районе Неаполитанского залива, особенно в окрестностях одного из приморских городов, современного Поццуоли.
Такой вулканический пепел имеет специальное название — пуццолан. Пепел такого типа можно встретить в разных частях мира, в частности, его можно добыть в Украине и в Карпатских, и Крымских горах.
Учёные выделяют несколько особенностей, которые делают древнюю технологию изготовления цемента более передовой, чем современную.
Во-первых, изменился состав бетона. Бетон на основе портландцемента состоит из кальция, силикатов и гидратов (К-С-Г). В состав римского бетона входило меньше кремния, а вместо него добавлялся ещё один компонент — алюминий. Такое сочетание кальция, алюминия, силикатов и гидратов (К-А-С-Г) позволяло создать очень прочный материал.
Во-вторых, древнеримский и современный цементы имеют разную структуру. Цемент на основе К-С-Г, застывая, становится похожим на такие природные структуры, как тоберморит и женнит. Однако он только подобен им — идеальной кристаллической структуры в современных цементах не увидеть.
Однако тоберморит обнаруживается в составе древнего римского бетона, который образуется там благодаря добавлению алюминия. Кроме того, само сочетание алюминия с тоберморитом даёт чрезвычайно прочный и долговечный материал.
Анализ показал, что по римскому рецепту для изготовления цемента требуется значительно меньше извести — его добавляется только 10% от веса всех компонентов. Температура, которой подвергается смесь, также на треть меньше, чем требуется при изготовлении портландцемента. А известь при реакции с богатым на алюминий пуццоланом и морской водой даёт очень прочные сочетание К-А-С-Г и алюминий-тоберморита.
«В середине 20-го века бетонные конструкции были рассчитаны на 50 лет, и немало таких зданий уже доживает свой век», — говорит Пауло Монтейро, профессор гражданской и экологической инженерии в Университете Калифорнии.
По словам специалиста, нынешние сооружения рассчитаны на 100—120 лет. Однако римские портовые сооружения сохранились на протяжении 2 тысяч лет и выстояли в условиях химического воздействия и подводных течений.
Глина
Украинские строители издавна используют глину, ведь страна богата этой осадочной породой. Территория ее распространения простирается от Полесья до берегов Азовского моря почти на тысячу километров. Раньше глину широко применяли в быту: от изготовления посуды до возведения жилья.
Хата-мазанка
Для постройки хаты-мазанки сначала делали деревянный каркас, на который затем накидывали как простую глину, так и с кизяком — высушенным навозом. Пустоты между вертикальными стойками и горизонтальными балками каркаса заполняли, устанавливая промежуточные деревянные колья и жерди, которые затем оплетали соломой и обмазывали глиной. Происходило это в несколько этапов: первый слой глины оставляли для просушки, затем набрасывали новые слои. Процесс повторяли до тех пор, пока поверхность стены не становилась ровной и гладкой.
Структура мазанки видна на разрушающейся стене. Фото: MrPanyGoff / Wikimedia Commons
Техника возведения хаты-мазанки варьировалась в зависимости от региональных особенностей. К примеру, на Подолье ее каркас изготавливали из дуба, стены и потолок заплетали грабовым хворостом, на который накидывали глину, смешанную с сечкой — мелко нарубленной соломой.
Пол в такой хате делали из смеси глины и соломы, а чтобы он не был холодным, снаружи по периметру дома сооружали завалинку — невысокую насыпь, которая выполняла роль лавки и дополнительно утепляла нижнюю часть стен и пол. Крыша обычно была соломенной.
Сегодня технику хаты-мазанки используют украинские архитекторы Сергей Махно, Олег и Лиля Украина, Юрий Рынтовт, Виктория Якуша, а также столяр Николай Степанец. Зимой в подобном здании тепло, а летом, наоборот, ощущается прохлада. Сергей Махно также ценит глину за то, что она хорошо повторяет природные формы — будь то скала, песчаная дюна, мрамор или камень. Он называет эту технику актуальной из-за ее аутентичности и естественности, добавляя, что она помогает архитектору в самовыражении.
Есть у хаты-мазанки и недостатки. Финальное покрытие на стене может отшелушиваться, если к нему часто прикасаться. Еще одной проблемой являются грызуны и тараканы, для которых естественные материалы — будто приглашение в дом. Также в глиняные стены нельзя вбить гвоздь, чтобы, например, повесить полку: ему не на чем будет держаться. Архитектор Олег Украина отзывается о данной технике как о нецелесообразно затратной — и на этапе возведения здания, и на этапе эксплуатации.
Ресторан «Гуляй Поле» по проекту студии Олега и Лили Украина. Фото: Юрий Орлик
Современные вариации техники строительства хаты-мазанки отличаются от традиционной формами. Они могут быть более сложными и с другими пропорциями, но набор материалов остается тем же, что и раньше. Хотя, к примеру, архитекторы студии Махно добавляют в глину семена льна, конопли и чайные листья, чтобы придать покрытию фактуру и аромат.
Олег Украина использовал модифицированную технику хаты-мазанки в своих проектах — с бетонным фундаментом и стяжкой пола, со вставками из кирпича в стенах, чтобы можно было смонтировать полки. Классические пропорции хаты архитектор тоже изменил, а за досками скрыл вентиляцию, кондиционеры и прочие инженерные системы.
Глиняные стены
Из необожженной массы, представляющей собой смесь глины, песка и соломы — самана, — делают кирпич-сырец, или лампач. Это самый древний вид кирпича, поскольку самый простой: сформированные кирпичи из сырой глины просто высушивали на солнце. Из сырца строили еще древние египтяне. Здания, возведенные из такого кирпича, где обычно не менее 50% глины, называют саманными домами. Таким можно считать ресторан «Гуляй Поле» по проекту Олега Украины — кирпичи для него изготовили западноукраинские специалисты.
Архитектор Олег Дроздов в своем проекте Bursa Cabins Tripillya тоже будет строить из местной глины, добавляя в нее для большей прочности песок и гравий в разных пропорциях. Для несущих конструкций здесь сделали замес из вышеупомянутых материалов с использованием цемента. Таким образом в проекте соблюли принципы экологического строительства. Глинистые грунты есть на месте самого Bursa Cabins Tripillya — значит, материал локальный, а не привезенный из других регионов.
Образец материала из глины, гравия, песка и цемента для постройки Bursa Cabins Tripillya. Фото: Drozdov & Partners
Bursa Cabins Tripillya студии Олега Дроздова. Изображение: Drozdov & Partners
Глиняная отделка
И хаты-мазанки, и саманные дома снаружи и внутри традиционно обмазывали глиной. Обычно это происходило торжественно и приобретало в некоторых регионах Украины характер ритуала. Люди верили, что таким образом создают своеобразную оболочку, выполняющую роль магического силового поля и гарантирующую защиту жилья и его хозяев от злых сил.
Сейчас техники отделки стен глиной, а именно валкование и набивание фактуры ложками, используют для декорирования в интерьере. Валкование — это первичный процесс обмазывания хаты толстым слоем глины, конского кизяка, соломы, песка и воды. Все это сырье предварительно замешивают, а затем из него изготавливают шарики-валки, которые служат первым слоем обмазки дома глиной.
Украинский бренд FAINA Виктории Якуши применяет эту технику для создания мебели, а также предметов быта. Дизайнеры используют органическую смесь Ztista, в составе которой бумага вторичной переработки, глина, солома и сено. Затем каждый предмет просушивают и покрывают натуральной краской.